Tuesday, May 18, 2010

How a giant ape nearly brought flightless pterosaurs to cinema screens


I've not kept it much of a secret that I’m a big fan of King Kong or, at least, the 1933 and 2005 versions (you can keep your ‘76 and Toho incarnations, thanks). There was something about the mythos of the film that excited me even before I had seen it so, when I was eight and my family saw the ’33 Kong being shown on late night TV, we grabbed it on video tape and I got up especially early before school to watch it. I only managed to see a brief glimpse of Kong himself before I had to leave for school, but that was enough to ensure that I resumed my viewing as soon as I got home. Almost 18 years later, I can still remember watching the charging Stegosaur for the first time, or that Brontosaurus chucking sailors around a swamp before chasing them up the tree. And, of course, the T. rex vs. Kong wrestling match, all framed by the wooden cabinet around our old TV and watched from our comfy blue sofa just left next to the patio door, with the heavy blue curtains closed to keep the glare off the TV.

Sometime later, my sister would record The New Adventures of Superman over virtually the entire thing and leave only Kong’s death atop the Empire State Building as my entire Kong experience. We’re still not talking.

Anyway, things turned out all right: I eventually got a proper copy of Kong and, hooray, Peter Jackson remade the original to generally great acclaim and success in 2005. Yesterday, my day was made when I received a copy of The World of Kong: A Natural History of Skull Island, essentially being a collection of the creature and environment concept art for Jackson’s movie. Tell you what: Weta Workshop, the chaps behind the 2005 Kong special effects, really went to town with their ideas. They literally imagined an entire world, or at least an entire island, for their movie to be based in. In essence, they embarked on a big speculative zoology project, imagining what may have happened if Skull Island (the mysterious land that the explorers of the film er… explore) held a whole bunch of Mesozoic critters that survived the K/T extinction and continued to evolve. The film shows a handful of the more charismatic creations and environments, but there was buckets more that could’ve gone in. There’s nasty-looking fish, birds, worms and insects, several flying rats, all manner of theropods, ceratopsians and sauropods and even – get this – flying (not gliding) frogs. But they didn’t just go for wild and spectacular stuff: apparently fully immersed in their world, the chaps at Weta imagined the quieter, more sedate biota of Skull Island, including the inclusion of pretty-standard looking storks, egrets and herons in swamps and wetlands. But, and here’s the really cool bit, they also toyed with the idea of flightless, cormorant-like pterosaurs.

How cool would that have been? Secondarily flightless pterosaurs on film! And pterosaurs that are really, really far removed from those that we know and love! Sadly, it wasn’t to be but, still, it’s closer than almost any other film project I know of. Christened Axiciacephalus curia (see image at the top of this post; by Weta artist Johnny Brough), the Weta flightless pterosaur is around a metre long, has naked skin and bears long, low jaws filled with isodont, regularly spaced teeth. The nostrils are positioned far back along the jaw and on the dorsal surface of the skull. The neck and body are short but the tail is long, deep and muscular. Weirdly, the forelimbs are heavily modified into short, flipper-like appendages while the hindlimbs are elongate, three-toed and digitgrade. It’s meant to dwell around streams and live in a cormorant-like fashion, diving underwater and propelling itself along with its long legs. It really is very far removed from all things pterosaurian and, frankly, if it weren’t for the text, I would’ve thought it was some sort of weird theropod. Still, it deserves acclaim for being totally different (I thought my goat-tapejarids were good, but they’re blown out of the water here) and, moreover, a short-armed diving pterosaur may not be as crazy as you’d think.


And here’s why
For one thing, while pterosaur forelimbs are considerably more conspicuous than their hindlimbs, most pterosaur legs are not under-developed. As Padian (1983), Bennett (1997) and Habib (2008) have noted, they only appear small in contrast to the enormous heads and arms that characterise pterosaurs: they’re actually proportionate to the torso size and mechanically suited for powerful, leap-assisted takeoffs (Bennett 1997). Moreover, pterosaur swimming trackways indicate that they propelled themselves through water with their feet, not their hands (Lockley and Wright 2003; see adjacent image from the same paper. Illustration by Judy Peterson). Therefore, it’s not impossible to imagine a situation where a specialist wader pterodactyloid – a ctenochasmatoid, say – became secondarily flightless and, as wading turned to swimming, developed longer, more robust hindlimbs. Simultaneously, a diving animal would almost certainly reduce the size of its drag-inducing and now largely-useless arms, but still maintained some of their aerofoil properties for use as flippers. It’s a stretch, sure, and I’m not really sure the final product would look like Axiciacephalus, but I wouldn’t rule it out.

There's loads more we could say about this, but I don't really have the time. Still, it's pretty neat that flightless diving pterosaurs came close to being put on film and, actually, are a pretty groovy idea. In retrospect, you can see why Axiciacephalus didn’t make it into Kong 2005: although neat in its own way, it’s hardly as attention grabbing as the big tyrannosaurs, brontosaurs and gorillas that lived nearby. Certainly, it would’ve been a very different movie if Axiciacephalus and his more sedate chums had featured heavily. Anyway, must dash: I’ve got to go flip a giant pterosaur.

References

  • Bennett, S. C. The arboreal leaping theory of the origin of pterosaur flight. Historical Biology, 12, 265-290.
  • Habib, M.B. 2008. Comparative evidence for quadrupedal launch in pterosaurs. Zitteliana, B28, 161-168.
  • Lockley, M. G. and Wright, J. L. 2003. Pterosaur swim tracks and other ichnological evidence of behaviour and ecology. In: Buffetaut, E. and Mazin, J. M. (eds.) Evolution and Palaeobiology of Pterosaurs, Geological Society Special Publication, 217, 297-313.
  • Padian, K. 1983. Osteology and functional morphology of Dimorphodon macronyx (Buckland) (Pterosauria: Rhamphorhynchoidea) based on new material in the Yale Peabody Musuem. Postilla, 189, 44 pp.
  • Weta Workshop. 2005. The World of Kong: A Natural History of Skull Island. Pocket Books, London, 223 pp.

Saturday, May 15, 2010

Embarrassing questions on Quetzalcoatlus


You can’t queue up at a supermarket checkout nowadays without being bombarded by celebrity lifestyle magazines. They glare at you from the impulse-buy shelves with paparazzi shots of stars looking flabby, pregnant, boozy or unhappy and garish, block capital headlines scorn celebs for revealing their mortal flaws. There is probably a deep-seated psychological reason to their popularity, perhaps reflecting the desire people have for gossip or reassuring somewhat insecure readers that it’s OK, people with stars on Hollywood Boulevard aren’t perfect either. The thing that strikes me, though, is that a lot of the people splashed all over the front pages of these rags have very little substance behind their fame, becoming famous because they took they posed semi-nude for a tabloid newspaper, are related to someone else in the public eye or appeared on telly for five minutes on a reality TV show. These are the empty celebrities, the ones that you assume have some reason for being known but, when investigated in more detail, are actually quite devoid of substance. It’s rare that these tabloid-fodder achieve international fame: to do that, you’ve at least got to be associated with an internationally-released product or hung-out in high-profile political circles. In some respects, then, becoming a real international household name requires a little more substance than your local, lower-grade celebrities. Talent, though, is handy but not strictly necessary.

There are definitely fossil animals that are the equivalent of A-list celebs, the sort of critters that every five year-old knows and that press releases strive to mention, no matter how tangential their work is to them, to gain more kudos. They’re the animals that the public know and love, the likes of Tyrannosaurus, Triceratops, woolly mammoths and sabre-toothed cats. Typically, these animals do have some substance to them: while their taxonomy may be confused or controversial, they definitely ‘exist’. Some pterosaurs are in this club too, with Pterodactylus (or probably ‘pterodactyls’) or Pteranodon being at the top of the list, and Quetzalcoatlus, everyone’s favourite superpterosaur, just behind (detail of a new image above). Thing is, though, Quetzalcoatlus may be a fraud. Yes, that’s right: there may be so little substance to its existence that its status as a household palaeontological name is undeserved: it’s a local celeb masquerading as a big shot. That’s controversial stuff and, no doubt, several of you have just sprayed your monitor with coffee shot through your nose at the very idea of such a thing. But mop up that liquid, dry the screen off, and we’ll see why I’m suddenly being so nasty to one of the cornerstones of Azhdarchidae.


Giant, yes; diagnostic, maybe not
As I’m sure you all know, Quetzalcoatlus stems from the Maastrichtian Javelina Formation of Texas. Remains of several animals that would be referred to this genus were found from 1972 – 1974 and were briefly described by their discover, Douglas Lawson, in 1975 (Lawson 1975a). Quetzalcoatlus was erected in the same year (Lawson 1975b) with fragments of a giant left wing (including a famous complete humerus, TMM 41450-3; see image, above) being used as the holotype for the type species, Q. northropi Lawson, 1975b. A bunch of smaller individuals that were represented by substantially more complete remains were discovered at the same time and initially referred to the same species (Lawson 1975a, b) but, later, were said to be sufficiently distinct from Q. northropi to deserve their own species (Kellner and Langston 1996). Pending their complete description, however, Kellner and Langston simply called them ‘Q. sp.’ for their work on the Quetzalcoatlus skull.

That all looks above board on the surface, but it doesn’t take much digging to find several massive holes. Firstly, despite the wealth of material that has been referred to it, neither Quetzalcoatlus or Q. northropi have ever been given a rigorous taxonomic definition*. To my knowledge, only Nesov (1991) has had a stab at a Quetzalcoatlus definition but his listed characters are either not unique to Quetzalcoatlus or of questionable validity, so his work is not really useful here. This leaves us without a diagnosis and, accordingly, we simply cannot know if Q. northropi is a valid species or not. What’s more, with Q. northropi being the type species of Quetzalcoatlus, the entire genus must go if the former is sunk.

*You could get away with this sort of stuff in the 1970s, but it’s much harder to be taxonomically slack nowadays. The ICZN (the body that regulates naming of zoological specimens) has recently tightened its rules considerably to make sure that new taxa come with proper holotype allocation, diagnoses and all other due practises (e.g. article 16, International Commission on Zoological Nomenclature 1999), so messes like the one under discussion here should – in theory – eventually become a thing of the past.

In my eyes, this is quite a real possibility. Pterosaur limb elements aren’t normally named because they are not considered diagnostic at generic or species levels: taxa that are based on limb elements alone have been considered nomina dubia by later authors. ’Santanadactylus’ spixi - a set of wrist bones - and Palaeornis cliftii - an isolated humerus – have both fallen into this trap (Unwin 2003; Witton et al. 2009). Unless Q. northropi is unusually distinctive, it’s possible it may be binned too. Adding more concern to this worryfire is that, so far as I can see, the Q. northropi humerus doesn’t look that different from other giant azhdarchid humeri (e.g. Padian and Smith 1992; Buffetaut et al. 2002) and the existence of these other giants nullifies the possibility of using size as a diagnostic feature (though this would be dodgy anyway). The other Q. northropi elements are so scrappy that they’re probably of very little taxonomic utility and preclude the use of limb element proportions in a diagnosis, too. Call me cynical if you like, but it looks like this could be an uphill struggle to me.


The plot thickens
There’s more. With no definition for Quetzalcoatlus, the referral of the Q. sp. material (including that depicted above, from Kellner and Langston 1996) to this taxon is also questionable. The Q. sp. material is what people refer to when talking about the detailed anatomy of Quetzalcoatlus, but we need to be careful: there has never been any justification printed for the allocation of Q. sp. to Quetzalcoatlus: we’ve just been told it’s similar to Q. northropi and can therefore be placed in the same genus. Thing is, Hatzegopteryx, Arambourgiania and Zhejiangopterus are pretty similar animals to Q. northropi too, so why can’t the Q. sp. material been popped in one of these genera instead? You can't argue taxonomic provinence in this instance, either: it's highly likely that there is more than one azhdarchid genus in the Javelina Formation (see my thoughts on this here), so you can’t suggest allocation of Q. sp. to Quetzalcoatlus through association alone.

To be clear, I'm not saying that Q. sp. itself is of questionable validity - whatever you want to call it, Q. sp. is definitely a valid, diagnosable species, I’m just iffy about its allocation to Quetzalcoatlus at present. Note, however, that the story continues outside of material referred to Quetzalcoatlus, too: the status of Hatzegopteryx may also hang in the balance. I don’t have time to go into that now, though.

So, what next?
The resolution of all this is, in my view, quite straightforward. Eagle-eyed readers may have read between the lines of this post and realised that, despite it’s fame, popularity and unearthing almost 40 years ago, there is almost nothing written or illustrated of Quetzalcoatlus. The issues highlighted here will not be resolved without this data and, frankly, a few good photographs and descriptions of Q. northopi would give all the information we need to get started. There is, in fact, a bit of an elephant in the room about Quetzalcoatlus and, foolish though it may be for a bloke looking for a job in the pterosaur corner of palaeoindustry to be so outspoken, it should be flagged up. Without mentioning any names, the Texas Memorial Museum has placed a strict embargo on the release of information about Quetzalcoatlus until the full monographic description has been properly published. This has been promised since at least the 1980s (Langston 1981; Kellner and Langston 1996) and, in the meantime, getting access to the material seems to be extremely difficult. I asked to see the material back in 2006 and was told no. Colleagues of mine have asked the same, and got the same answer. The few friends of mine that have seen the specimens are sworn to secrecy and, if they want to publish even itty-bitty snippets of information about them, they have to ask permission first.

If you ask me, this is all a bit rotten. The Society of Vertebrate Paleontology’s ethical mission statement states that vertebrate palaeontologists of the world are here to:

  1. To advance the science of vertebrate paleontology throughout the world;
  2. To serve the common interests and facilitate the cooperation of all persons concerned with the history, evolution, ecology, comparative anatomy and taxonomy of vertebrate animals, as well as the field occurrence, collection and study of fossil vertebrates and the stratigraphy of the beds in which they are found;
  3. To support and encourage the discovery, conservation and protection of vertebrate fossils and fossil sites;
  4. To foster the scientific, educational and personal appreciation and understanding of vertebrate fossils and fossil sites by avocational, student and professional paleontologists and the general public.
From the SVP Constitution, Article 12, Code of Ethics.


Aside from the point 3 in this list, it seems that the decades-long embargo on the Quetzalcoatlus material isn't really in keeping with these guidelines. I mean, I get embargoes. I get 'gentlemen's agreements' about publishing rights. But 40 years to publish a specimen description while simultaneously being very cagey about giving access to the material? Seriously guys, what's going on? I'm not sure there's quite enough ground here to go stampeding to the SVP ethics committee or anything, but when is this material going to be properly published and freely available to see?

References

  • Buffetaut, E., Grigorescu, D. and Csiki, Z. 2002. A new giant pterosaur with a robust skull from the latest Cretaceous of Romania. Naturwissenschaften, 89, 180-184.
  • International Commission on Zoological Nomenclature. 1999. International Code of Zoological Nomenclature (4th Edition). The International Trust of Zoological Nomenclature, 1999.
  • Kellner, A. W. A. and Langston, W. Jr. 1996. Cranial remains of Quetzalcoatlus (Pterosauria, Azhdarchidae) from Late Cretaceous sediments of Big Bend National Park. Journal of Vertebrate Paleontology, 16, 222-231.
  • Langston, W. Jr. 1981. Pterosaurs. Scientific American, 244, 92-102.
  • Lawson, D. A. 1975a. Pterosaur from the Latest Cretaceous of West Texas: discovery of the largest flying creature. Science, 185, 947-948.
  • Lawson, D. A. 1975b. Could pterosaurs fly? Science, 188, 676-677.
  • Nesov, L. A. 1991. Gigantskiye lyetayushchiye yashchyeryi semyeistva Azhdarchidae. I. Morfologiya, sistematika. Vestnik Leningradskogo Gosudarstvennogo Universiteta. Seriya 7, 2, 14-23.
  • Padian, K. and Smith, M. 1992. New light on Late Cretaceous pterosaur material from Montana. Journal of Vertebrate Paleontology, 12, 87-92.
  • Unwin, D. M. 2003. On the phylogeny and evolutionary history of pterosaurs. In: Buffetaut, E. and Mazin, J. M. (eds.) Evolution and Palaeobiology of Pterosaurs, Geological Society Special Publication, 217, 139-190.
  • Witton, M. P., Martill, D. M. and Green, M. 2009. On pterodactyloid diversity in the British Wealden (Lower Cretaceous) and a reappraisal of “Palaeorniscliftii Mantell, 1844. Cretaceous Research, 30, 676-686.

Saturday, May 8, 2010

On the nature of palaeontology and throwing away years of training for a career in artistry. Oh, and something on pterosaurs, too.

Every now and then it occurs to me just how silly vertebrate palaeontology is. Consider the following: access to specimens is extremely competitive, but, despite this, a vast wealth of material remains undocumented; chances of scoring funding are less than 5 per cent; a high proportion of the work you perform is unpaid; there are all sorts of political considerations when reporting new finds or sharing information and, aside from ‘being nice to know’, there’s very little reason or rationale to investigate most extinct vertebrates – invertebrates and microfossils have utility in stratigraphy and hydrocarbon work, at least. All the same, people are falling over themselves to work in this profession, which means you have to be bristling with qualifications to even think of applying for an academic palaeo position. These qualifications don’t come cheaply: in Britain, you’re looking at three years of a relevant degree study, probably another year earning a Masters, then at least another three of PhD study. Tuition fees alone across this seven year period will set you back well over £20,000 and, while you’re studying, your earning power is significantly reduced: while all your school friends are off earning proper money in real jobs, even funded students will be just about be breaking even. As such, these seven years are not just spent acquiring the skills you need to be a palaeontologist: they're also seven years off the property ladder and seven years of not really putting any money into personal savings, and there’s little guarantee of a job at the end of it. What’s more, your fancy doctor’s title can become a burden as, while academic jobs become (theoretically) open to you, doors close on most menial jobs as, frankly, employers realise - probably rightly in many cases - that a PhD in a menial job will fly the nest as soon as they can.

Now, I’m not saying it’s all bad - vertebrate palaeontologists work hard at what they do because it brings enormous personal satisfaction and, ultimately, they’re being paid to do something they like – but the points made above are worth thinking about if you’re looking at a career in vert. palaeo. I stress that I'm genuinely not trying to put people off aspiring to palaeo jobs, but there are equally rewarding professions that are better paid, considerably more accessible and, at times when unemployment is looming on the horizon, considerably less stressful. I’m faced with the latter situation at the moment: thanks to greedy bankers around the world, British university budgets have been squeezed and, to slash costs, the University of Portsmouth is not renewing my contract post July. As such, I’m looking at joining the dole queue unless I can find a job before then and, without going into detail, pickings are slim at best. So slim, in fact, that I’ve been giving serious thought to leaving science and pursuing a career teaching art: I really enjoy teaching and, at times, I do wonder what I’m doing in science anyway. My dress sense, working methods and hobbies make me pretty unusual amongst the scientists I hang around with, but appear to be pretty typical of artier folks. But then, of course, I write something like the piece below and, by the end of it, I’m feeling pretty scientific. Maybe I should perform a cladistic analysis on interests and character traits and, plotting myself onto the tree, follow the career picked out for me in the consensus analysis. Until I do that, though, exactly where I should put myself professionally is a mystery, and one I’m quite keen to get to the bottom of.


The bit where I start talking about pterosaurs
Thankfully, I’m not alone in not being sure where I fit. An unusual pterosaur skull, nicknamed the Painten Pelican, has caused a lot of discussion amongst pterosaur palaeontologists because it is, superficially at least, so danged weird (see image, above). The specimen comprised a complete skull, mandible and cervical vertebra and, if you’re around in Southern Germany, you can see it for yourself: it’s on display in the Solnhofen Museum. A cast and UV photographs of the specimen were making quite a buzz at the 2007 Flugsaurier Meeting, and, apparently, the specimen is very slowly being written up. The Pelican has been mentioned in an abstract by Tischlinger and Frey (2007) but, this aside, it’s not been mentioned in the literature at all. This abstract describes the specimen as ‘a recently discovered skull of a very large azhdarchoid pterosaur from the locality Painten (Upper Kimmeridgian)’, but there are several reasons to think that this identification is wrong. In fact, amongst my colleagues at least, there seems to be some real confusion as to where this specimen should fit into pterosaur phylogeny. Thing is, I’m not sure we really need to be that confused about it, and here’s why.

The Painten Pelcian is, undeniably, something to get very excited about. The specimen is fantastically preserved, around 30 cm long and most notable for its strange jaws that are dorsally deflected and markedly divergent towards the jaw tip, forming a region where no direct occlusion of the bony jaw elements could occur. The jaw tips themselves, though, could occlude and bear a few (less than a dozen?) rounded, peg-like teeth in both the upper and lower jaws. The rest of the jaws are toothless, but a strange growth - presumably soft-tissue of some kind – appears to be present on the upper jaw and filled the gap made by the diverging jaws. It’s important to note how neat these features are: there’s no indication that they are pathological and, to date, there’s never been a pterosaur reported with such an odd looking jaw apparatus. The rest of the specimen shows a large fibrous crest along the mid-length of the skull, a nasoantorbital fenestra, an inverted-teardrop shaped orbit and a reclined occipital face with a prominent, rounded supraoccipital crest. The palate is prominently distended along for much of the jaw length and the jugal has an unusual posterior ventral deflection, extending ventrally so that the jaw articulation is in line with the base of the palatal surface. Sclerotic rings and hyoid apparatus are also preserved. The vertebra, so far as I can make out, is somewhat elongate, but other features are hard to discern from the photographs I have of the specimen.

So, it’s definitely a bit weird, definitely exciting, but what actually is it? Thanks to Darwinopterus, we can’t definitively say that the Painten Pelican is a pterodactyloid as we lack postcervical material that would show the only strong synapomorphies of this group (Lü et al. 2009). The skull is quite derived, though, and all basal monofenestratans found to date have pretty conservative skull morphology, so, until we see reason not to, it is probably safe to consider the Pelican as a pterodactyloid. The allocation of the Pelican to Azhdarchoidea by Tischlinger and Frey (2007) is, frankly, baffling, however: azhdarchoid skulls are readily identified by their edentuly and orbits positioned below the dorsal margin of their particularly large nasoantorbital fenestrae (see, for instance, Lü et al. 2008). As none of these features are seen in the Painten Pelican, it almost certainly is not an azhdarchoid. Elsewhere in Pterodactyloidea, the dental configuration is entirely opposite of what would be expected of a dsungaripteroid, ctenochasmatid or lonchodectid and the specimen lacks the elongate skull and derived dental characteristics of all ornithiocheiroids (e.g. Unwin 2003). It appears that we’re running out of places to put the Pelican then: is it something really, entirely new?

Probably not

While getting very excited about how kooky the Painten Pelican skull is, no-one seems to have noticed how favourably it compares with the Upper Jurassic French pterosaur Cycnorphamphus (= Gallodactylus; see Bennett 1996). This rarely discussed basal ctenochasmatoid, known from deposits in Canjuers and Solnhofen, contains two very similar species C. canjuerensis Fabre, 1974 (above, from Fabre 1974) and C. suevicus Quenstedt, 1855 (see photograph of skull and neck cast, below) and both bear dorsally sweeping upper jaws, kinked jugals, broad supraoccipital crests and elongate cervical vertebrae that are just like those of the Painten Pelican. What’s more, C. canjuerensis has a ventrally deflected mandible and robust cranial bones that are strikingly similar to the Painten specimen but, unfortunately, the holotype of this species also has broken jaw tips that prohibit comparisons of tooth morphology. Happily, C. suevicus shows that the dentition of at least one Cycnorhamphus species is confined to the jaw tip, though it does extend somewhat further back in the jawline than that of the Painten specimen. No Cycnorphamphus material has the strange structure on the upper jaw or large fibrous headcrest of the Pelcian, but this may reflect a imperfect preservation rather than their actual absence. The bottom line, though, is that the aspects of the Painten specimen that seem so odd are actually already known, almost identically so in fact, in another pterosaurs. Given that Cycnorhamphus and the Pelican stem from the very closely related depositional basins (see comment from Valentin, below), I think it’s very likely they’re one and the same. In fact, shoot: if the Painten Pelican isn’t just a complete skull of C. canjuerensis, I’ll eat my hat. The three corner job. With the feathers.


This could be another mystery solved, then, but I stress that this article is based on a brief period spent with a cast and numerous photographs of the Painten specimen, not the actual thing itself. I could, therefore, be very wrong and suggest waiting for the eventual technical documentation of this paper before getting too excited about what is said here. Still, it’s food for thought and, frankly, leaves me wishing that everything in life could be a bit more straightforward. Back to the work hunt, I guess.


References

  • Bennett, S. C. 1996. On the taxonomic status if Cycnorhamphus and Gallodactylus (Pterosauria: Pterodactyloidea). Journal of Paleonotology, 70, 335-338.
  • Fabre, J. 1976. Un noveau Pterodactylidae sur le gisement “Portlandian” de Canjurs (Var): Gallodactylus canjuersensis nov. gen., nov. sp. Comptes Rendus de l’Academie des Science, Paris, 279, 2011-2014.
  • Lü, J., Unwin, D. M., Xu, L., and Zhang, X. 2008. A new azhdarchoid pterosaur from the Lower Cretaceous of China and its implications for pterosaur phylogeny and evolution. Naturwissenschaften, 95, 891-897.
  • Lü, J., Unwin, D. M., Jin, X., Liu, Y. and Ji, Q. 2009. Evidence for modular evolution in a long-tailed pterosaur with a pterodactyloid skull. Proceedings of the Royal Society B, 277, 383-389.
  • Quenstedt, F. A. 1855. Über Pterodactylus suevicus im lithographischen Schiefer Wüttembergs. Tübingen. 52 pp.
  • Tischlinger, H. and Frey, E. 2007. “Solnhofen” pterosaurs with soft-part preservation: Soft-tissue crests and occipital cones, preservation of muscles and hairy structures. In: Hone, D. (ed.) Flugsaurier: The Wellnhofer pterosaur meeting, Munich, Abstract Volume, 32.

Thursday, April 8, 2010

Scruffy pterosaurs by scruffy people


As regular readers of the Pterosaur.Net blog will know (erm… assuming we have any), I work at the University of Portsmouth cobbling together models of giant pterosaurs out of bits of styrofoam, metal, fake fur and anything else that happens to be lying around. We’re supported by the Royal Society because, this coming June, we’re headlining their London Summer Science Festival. Being on a grander scale than anything the RS has pulled off before, our pterosaur models are booked to be displayed on the world-famous Southbank, right outside Royal Festival Hall and visible to thousands of people. The BBC have taken an interest in this and decided to record the progress on our project in a series of films: the first can be found here, the second here and, yesterday, the third was posted here.

Hosted by yours truly in the most forlorn looking vest seen this side of a Die Hard movie, it discusses the finer details of our pterosaur models: eyes, fur, colour and all that jazz. Also featured are Bob Loveridge, resident UoP Eyeman and chief techie-chap, and some of my slaves/groupies – sorry, student volunteers (Luke Hauser and Chris Callaghan) who’re working on their own contributions to the project. You can also spy a full-size Thalassodromeus bust in the background of one shot, but what you can’t see is it’s dual sided nature. Bored with making perfect pterosaurs over and over again and knowing full well that some pterosaur fossils show all sorts of interesting pathologies (Bennett 2003), I decided to render our Thalassodromeus rather visually-imparied in it's left eye, a consequence of a dirty-big scar across its eye and a cataract. Check him out: if anyone ever made a Bond film set in the Mesozoic, this thing would definitely be a baddie.


Dinner the baby titanosaur, momentarily freed from the azhdarchid jaws that normally hold him, acts as scale: he's about 1.2 m long. He's also been overhauled in recent weeks: he's no longer green, has fewer obvious joins and has undergone facial reconstruction surgery. He still has the same fantastic fashion sense, however and, apparently, a taste for chocolate (adjacent photo by Sarah Brown). Those wondering how sauropods grew so big so fast, take note.



Reference

  • Bennett, S. C. 2003. A survey of pathologies in large pterodactyloid pterosaurs. Palaeontology, 46, 195-196.

Sunday, April 4, 2010

Actinopatagia percussion and sketchy speculation


I’ve been enjoying the previously unreported sonic qualities pterosaur wings a lot this week. Thanks to the need to paint some fibreglass pterosaur wing membranes and a newfound obsession with the heavy beats of Florence and the Machine, I’ve been smacking out tunes with paintbrushes on the folded wings of our giant male azhdarchid model, tastefully named Bamofo, all week. Hit them hard enough with a paint-slopped brush and they make a noise unlike that of a walloped bass drum, albeit one that splashes paint everywhere and renders the artist and workshop looking like a Jackson Pollock canvas. With the amount of paint I find on the walls, floor and my hands, arms, shoulders, chest, neck and face after a particularly enthusiastic rendition of Dog Days Are Over, I’m surprised any colour has made it onto the model at all. Seriously: given my choice of using blue shading on Bamafo’s leading wing edges, a good day at work means I could easily pass as an extra in Braveheart.

To date, there’s not been any indication that any pterosaurs lost these impromptu percussion devices, nor scaled back their wing anatomy enough to assume that, winged or not, they had abandoned flight. Accordingly, I’m not aware of many – if any – pterosaurologists who consider that any known pterosaur was secondarily flightless. Unlike theropod dinosaurs, which seem to have developed and lost flight numerous times in their evolutionary history, it seems that all pterosaurs - even the biggest 250 kg jobbies - were able to takeoff and fly about with minimal fuss (Marden 1994; Habib 2008). Buffetaut et al. (2002) raised the possibility that the giant azhdarchid Hatzegopteryx may have been flightless, but ruled it out on grounds that the holotype humerus bears the same volant characteristics as it’s smaller brethren. Sato et al. (2009) suggested that pterosaurs spanning more than 5.1 m and massing more than 41 kg would be incapable of flight, thereby grounding a good number of forms including many long-winged, tiny legged ornithocheiroids. Without going into too much detail, this work is quite problematic and I’m pretty sure these conclusions have not been accepted by the pterosaur community: a rebuttal paper, penned by Mike Habib and myself, is under review, and Ross Elgin has posted similarly-minded comments on the Dragons of the Air blog. I suggested that mass and wingspan of Dimorphodon may have combined to produce a relatively ineffective flier that only took to the air to cover ground quickly or escape predation (Witton 2008): this could be taken as a suggestion that dimorphodontids were moving towards abandoning flight, but there’s no reason to assume that it had been totally lost.

Despite this, the subject of flightless pterosaurs has been brought up in informal circles a number of times: along with numerous discussions of the topic on blogs and the Dinosaur Mailing List, flightless pterosaurs have appeared on Tet Zoo here (along with being discussed in the comments of several other Tet Zoo posts) and were famously depicted as giraffe-like critters in The New Dinosaurs by Dixon (1988). In such discussions, it seems generally accepted that there’s no reason why pterosaurs shouldn’t have abandoned flight given the right selection pressures: as long as they could find enough to eat, reach suitable areas for reproducing and, by whatever means, achieve relief from predators, the terrestrial abilities of pterosaurs were probably sufficient to let them hang up their wings and let them become fully terrestrialised again. I’m in full agreement with this and, here, want to share some old speculations (drawn at the end of 2008) of flightless pterosaurs, complete with horrible, unimaginative Latin and Greek names. The drawings are a bit crude, but I’ve not had time to spruce them up – nor will I in the foreseeable future. Unlike most speculative flightless pterosaur creations, though, I haven’t just picked on azhdarchids: although they may have been more terrestrially proficient than other pterosaurs (Witton and Naish 2008), I’m sure other clades would be equally capable of abandoning flight. As such, some of imaginings here would not necessarily post-date the known pterosaur record: many would have existed side-by-side with flying (and Mesozoic) pterosaurs.

Apterigulo
Found in Early Jurassic forests (and decorating the top of this post), this metre-long bundle of fluff has ancestry lying with dimorphodontids: continual development of their large heads and hindlimbs (these attributes already make genuine dimorphodontids quite heavy for their size [Brower and Veinus 1981; Witton 2008] but retention of short wings rendered some members of this clade capable of only the most limited burst of flight, and, eventually, even this ability was lost. While the terrestrial ability of basal pterosaurs has generally been considered to be poor at best, this loss of flight didn’t leave Apterigulo and it’s kind up the proverbial locomotory creek: although the limbs are somewhat sprawled like it’s ancestors (see Unwin 1988), Apterigulo can move like dynamite with saltating, or rather bounding, around like a giant, reptilian squirrel. While this method of locomotion doesn’t permit Apterigulo to run marathons, it gives it a neat burst of speed over short distances and, what’s more, it could happily chase you up a tree: the exaggeration of its massive appendages and claws make it even more proficient at climbing than its ancestors (Unwin 1988). The skull, teeth and neck have become more robust and powerfully muscled, giving what was ancestrally a nasty bite even more force. Being derived from a flighted ancestor also gives Apterigulo an unusually strong but lightweight skeleton: this not only facilitates quicker movement, but means it’s capable of considerable rough and tumble. It uses these attributes to ambush and chase vertebrates across a range of size classes, mainly eating smaller forms but occasionally subduing prey of equal or even larger size. Burrowing dinosaurs are particular favourites: with its massive bulk blocking the burrow entrance, the experience is akin to being stuck in a train carriage with a hungry tiger. Once subdued, the carcasses of big animals are dragged into the treetops to keep them out of reach of other carnivores but, if their carrion is threatened before this can happen, little Apterigulo will stand firm against even the biggest scavengers. It would not, therefore, be an ideal house pet.


Caprajarids
At some point in the middle Cretaceous, some tapejarid populations began to favour the herbivorous side of their omnivorous diet so much that their guts required some development, including the expansion of their gizzard (it’s likely all pterosaurs had a gizzard of some kind – Reily et al. 2001) to house bulkier quantities of gastroliths. Their beaks became more robust with rounded tips and sharp tomia, making them suitable for cropping all manner of vegetation before their guts began the real processing procedure. Living in relatively bleak environments that excluded the existence of large dinosaur herbivores ensured that movement over harsh, craggy terrain was a constant issue, but the retention of the large foot pads of their ancestors (Frey et al. 2003) ensured good traction on even perilous slopes. Their pycnofibres – or fuzz – grew particularly long and shaggy to withstand the cool nights and winds of such environments and gregarious living ensured protection from the large azhdarchids that occasionally preyed upon the smaller individuals. Living in such groups encouraged the development of even more elaborate cranial crests than those of their flying ancestors as males sought breeding rights over the females. Free of aerodynamic considerations, male caprajarids went to town with bifurcating (males and females of this sort can be seen above), spiralling and even horn-like crests. If these visual displays could not sort out competition between males, violent shoving, punching and biting matches, often conducted whilst balanced on their hindlimbs, would take place.


Jacanazhdarchines
While the big azhdarchids were denizens of the open plains, smaller, more basal variants kept to the forests. One clade of these forest forms lost their ability to fly in the Late Cretaceous and, while some flightless developed into seriously lanky limbed, sloth- or monkey-like arboreal forms, others began to specialise in foraging around ponds and streams, these being obvious sources of all manner of foodstuffs. The smallest forms, the jacanazhdarchines (above), were only 20 cm in length and defied the reduction of foot size and non-flight fingers seen in their larger cousins (Hwang et al. 2002) and instead developed large, weight spreading appendages that made movement across soft substrata easy. The bulk of the flight apparatus was lost comparatively recently in these forms and, although the wing membranes were lost, the wing finger was retained and served as an additional weight spreading devices. The limbs were also lengthened, facilitating movement through deeper water and, when splayed, distributing their weight over an even larger area. With such weight spreading abilities and such small size, jacanazhdarchines could be entirely supported by even flimsy vegetation growing over water bodies and, with a turn of speed, could literally walk on water. The already hypertrophied azhdarchid rostrum was elongated further for swishing through the water in search of food, though the fused pterosaur skull and poor gaping ability of such a long rostrum means that their probing abilities were limited, however.


Aliazhdarcho
The pterosaur equivalent of putting a jet engine in a Land Rover, Aliazhdarcho (above) applied the powerful musculature, skeletal morphology and physiology of its azhdarchid ancestors to the sort of carnivory typically reserved for big, predatory theropods. The largest member of this clade was Aliazhdarcho, a 4 m tall monster with a deepened, robustly constructed metre-long head and stout limbs. This latter point is crucial to the hunting strategy of Aliazhdarcho: retaining the highly pneumatised skeleton of its ancestry means that it combined strength with lightness (despite its size, Aliazhdarcho weighed just under 500 kg), increasing the power/weight ratio and allowing the animal to move like the clappers during a sprint. The massive shoulder muscles that once propelled azhdarchids into the air were retained, but modified somewhat to prioritise grounded locomotion over aerial. The principle role of these muscles is a modified quadrupedal launch (Habib 2008) that, rather than being used for takeoff, provided a dynamite sprint start. With shoulder musculature used to high anaerobic loads, Aliazhdarcho was capable of moving at great speed for up to a minute before tiring, so ambushing it’s prey was the order of the day. Once within range, Aliazhdarcho would employ its long neck and head to strike its target prey, ramming or biting the haunches to prevent its escape and, ideally, tripping or crippling it. Once immobilised, the powerful jaws and deep, sharpened beak would remove chunks of meat from the dying animal, though the jaws weren’t quite strong enough to shatter bones. It would not, therefore, be a good idea to be a mid- to large-size animal in the same area as Aliazhdarcho: in short, wherever it was, you didn’t want to be.

And that’s it. Once again, that’s gone on far longer than I intended, but hey ho. Happy Easter to everyone and now, with the sun high in the sky, I’m heading off to my workshop. I just had a wicked idea involving our fake pterosaur fur and the bassline from David Bowie’s Stay.

References

  • Brower, J. C. and Venius, J. 1981. Allometry in pterosaurs. The University of Kansas Paleontological Contributions, 105, 1-32.
  • Buffetaut, E., Grigorescu, D. and Csiki, Z. 2002. A new giant pterosaur with a robust skull from the latest Cretaceous of Romania. Naturwissenschaften, 89, 180-184.
  • Dixon, D. 1988. The New Dinosaurs: An Alternative Evolution. Grafton Books, London, 120 pp.
  • Frey, E., Tischlinger, H., Buchy, M. C., and Martill, D. M. 2003. New specimens of pterosauria (Reptilia) with soft parts with implications for pterosaurian anatomy and locomotion. In: Buffetaut, E. and Mazin, J. M. (eds.) Evolution and Palaeobiology of Pterosaurs, Geological Society Special Publication, 217, 233-266.
  • Habib, M.B. 2008. Comparative evidence for quadrupedal launch in pterosaurs. Zitteliana, B28, 161-168.
  • Hwang, K. G., Huh, M, Lockley, M. G., Unwin, D. M. and Wright, J. L. 2002. New pterosaur tracks (Pteraichnidae) from the Late Cretaceous Uhangri Formation, S. W. Korea. Geological Magazine, 139, 421-435.
  • Marden, J. H. 1994. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size. American Journal of Physiology, 266, 1077-1084.
  • Reily, S. M., McBrayer, L. D. and White, T. D. 2001. Prey processing in amniotes: biomechanical and behavioural patterns of food reduction. Comparative Biochemistry and Physiology Part A, 128, 397-415.
  • Sato, K., Sakamoto, K., Watanuki, Y., Takahashi, A., Katsumata, N., Bost, C., and Weimerskirch, H. 2009. Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs. PLoS ONE, 4, e5400.
  • Unwin, D. M. 1988. New remains of the pterosaur Dimorphodon (Pterosauria: Rhamphorhynchoidea) and the terrestrial ability of early pterosaurs. Modern Geology, 13, 57-68.
  • Witton, M. P. 2008. A new approach to determining pterosaur body mass and its implications for pterosaur flight. Zitteliana, B28, 143-159.
  • Witton, M. P. and Naish, D. 2008. A reappraisal of azhdarchid pterosaur functional morphology and paleoecology. PLoS ONE, 3, e2271.

Saturday, March 20, 2010

Update of Flugsaurier 2010 Beijing

Two minor updates have come through on this meeting from Lu Jungchang so I thought I should put them here:

"Hello everyone, please pay attention to the following two changes about the pterosaur symposium:

1. Abstract deadline (May 15):

We have just received news that abstracts for Flugsaurier 2010 will be published in the Journal . In order to ensure that everyone has enough time to prepare and submit abstracts we have decided to postpone the deadline for abstract submission to May 15. Please note that the page limit is now set at 4 pages. All other details remain as in the second circular.

2. Invitation letter.

If you need an invitation letter in order to secure a visa please make sure that you send us your passport details".

And finally since people don't seem to have quite picked up on this. DO NOT E-MAIL ME WITH YOUR QUESTIONS. I am helping out with the organisation but any questions should go to Dave Unwin or Lu Jungchang, not me.

Friday, March 12, 2010

Cross-post spectacualr - Zhenyuanopterus

Since I mostly blog over at the Archosaur Musings, it's perhaps inevitable that my contributions to Pterosaur.net are a bit behind, and even more so as I've been swamped with dinosaur related stuff of late and have not had much time for pterosaurs. Still, for those who have not seen it already, meet Zhenyuanopterus.


This is a truly remarkable boreopterid pterosaur with a 4 m wingspan and one hell of a set of teeth. To cap it off, the specimen is truly great - both complete and articulated and in wonderful condition.


Skull of Zhenyuanopterus holotype. Image courtesy of Lu Jungchang.

As you can see the skull is very long with quite a big midline crest, but it's the teeth that stand out. For a start, there are a huge number of them about 180 all told, and not only are the anterior teeth truly huge, but they are about ten times the length of the smallest teeth at the back of the jaw. It's quite a combination, and one certain to make life difficule for any Mesozoic surgeons but also anything that Zhenyuanopterus was trying to catch. As a boreopterid (and thus close to the ornithocheids) this was probably fish, though I have to wonder if such slender teeth were not vulnerable to being broken by large prey and suggests to me at least that perhaps smaller fish were normally targeted.

As the paper is really just a morphological description there's not much else to add here that won't be very technical and about as exciting at read as it would be for me to write. So I'll leave you with a nice picture of the whole, wonderfully preserved, specimen in all it's toothy glory.

I'll try and get things up faster in the future, but it can take time. Plus I really didn't want to bump Mark's excellent review of Ray Harryhausen's stuff off the top spot!


Lu, J. 2010. A new boreopterid pterodactyloid pterosaur from the Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Acta Geologica Sinica. 24, 241-246.